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ABSTRACT

This thesis presents an approach to find lower resolution CFD models that can
accurately lead a designer to a correct decision at a lower computatisnaigh-fidelity
CFD models often contain too much information and come at a higher computational cost,
limiting the designs a designer can test and how much optimization can be péréorthe
design. Lower model resolution is commonly used to reduce computational time. However
there are no clear guidelines on how much model accuracy is required. Insteaghegper
and intuition are used to select an appropriate lower resolution model. This thesiggpan
alternative to this ad hoc method by considering the added value of the addition iafiormat
provided by increasing accurate and more computationally expensive models. In the
algorithm presented here for selecting the correct model resolution, tgeetesho should
be most familiar with the model, creates some quantifiable metrics for maaplonents
that he/she identifies as key characteristics. The designer uses thdualdbamponent
metrics to create a selection utility function. The selection utiliiztion is used to validate
the accuracy of low-resolution model by comparing the magnitude of utifitye¢ads to the
correct decision. The low-resolution model can then be used to test multiple designs and/o
for optimization at substantially lower computational time, giving the desigoee

flexibility in the design process for the model and other similar models.



CHAPTER 1 Introduction

In the engineering design landscape, the use of computational simulation in the
design selection process is becoming an increasingly valuable tool. Theseatmnalt
simulations are numerical representations of a particular aspect (or grasgects) of a
physical product. For example, consider the design of a fan. A finite elerodet may be
used to examine the stress in the fan blade; a computational fluid dynamics mpdel ma
used to examine the blade pitch, airflow, and power needed; and an integral model may be
used to examine conservation of mass and energy. In each case, instead of building a
physical prototype, the engineer can create multiple computational modeldedtugii
design process. These computational models can often provide more detailed anksesr
time and at less cost than a physical model.

However, in many of these cases, high-fidelity models can take days ortweeks
return a single result on a proposed design, limiting the enginédityg o explore the
design landscape. In these cases, the use of computational modeling is vedydimdi
generally the design falls back on the practice of using physical mod&lsnab rules, using
computational modeling only to confirm the proposed design. The resulting exploration of
the design space is limited. Computational models are needed that are mobigbt t@
permit the timely exploration of multiple creative designs and accumnatgh to guide the
design process.

Based on this, we see that the challenge of using computational models isigalanci
the information available from the model with the time and cost needed to develop and use

the model. Detailed, high-fidelity models may provide a very accurateca@dout a



particular detail, but at a high cost in terms of resources, computatimeakind time to
create and validate the model. Conversely, a simple model can be run interactavely on
desktop or laptop and can be created quickly, but may not yield sufficient information to
support a design decision. A set of models is needed that can provide sufficienttioforma
without excessive cost. One significant challenge in the development of theskemsetiels

is that there are few rule sets, thumb rules, or guidelines available to lgeidevelopment

of the model sets needed in engineering design.

This thesis explores using the economic principle of value of informatianresans
to achieve the needed balance in the development of the simulations and models used in
engineering design. Recently, the use of value-of-information principlesigndeas been
examined by a several groups of researchers [12, 13]. Value of information is anieconom
tool that evaluates the benefit of collecting additional information in a degisadmg
context.

One of the challenges of using value of information with CFD models in deslyn is t
development of a set of simpler models. Several approaches are available including
orthogonal decomposition, models with lower-resolution grids, accelerated camesrge
using neural networks, and neural networks. In many of these cases, the toctiseis
development of metamodels in place of a high-order or more complex model. Bahas [
defined a metamodel as a lower-order model that represents (or maps)@mpiete
model. This definition can be expanded to say that metamodels are a set of models that
represent a more complex set of models. In metamodeling, a simplified modaboé a
detailed computer simulation is built and a number of computational experiments are

completed to create an approximation that can be used for untried inputs. Finding the optima



resolution for a simplified model, or metamodel, can lead an engineer to optingal des
selection in not only that problem, but also in other similar design problems.

This thesis examines the use of CFD models using lower-resolution grids as
metamodels for a validated and verified CFD model with a detailed gridsisadhema, a
standard process is used to create a validated and verified three-dimensiomab@#vith
a detailed grid. Following this, lower-resolution CFD models are used to modehténadre
and results of the high-resolution model. The choice of lower-resolution model is thén base
on the information needed for the design process and the time and resources needed for the
model.

This thesis is organized as follows. In Chapter 2, the background of value of
information and its use as a way to approach engineering design are intrachecatbdel
description for the experiment of a third-world stove used as the example woitki is
presented in Chapter 3. The setup for the experiment is provided in Chapter 4. Chapter 5
discusses the results of the experiment and validates the selection of alvastéaw-
fidelity model. Chapter 6 summarizes the results, discusses how this approalchecoul

approach to other design processes, and suggests avenues for further work.



CHAPTER 2 Background

Detailed engineering models (e.g., computational fluid dynamics anel éleitnent
models) are often developed to support the design of energy systems. The prowsss of
development, verification, and validation is a time-consuming but essential prblcess
are many proposed ways to validate a model, including animation (graphicaergptmsn),
comparisons to other models, extreme condition tests, historical data validatiah, f
validity (a person knowledgeable about the real system believes the modsl lagithitior to
be reasonable) [2], white-box validation (micro-scale/component accuracy) aakebblx
validation (macro-scale/overall accuracy) [3]. In the minimum validatighvarification
process, the first step is specifying the amount of accuracy required of Esnootigut
variables of interest for its intended application [2]. Next, the assumptions an@sheori
underlying the model should be tested. A face validity check should be done at each model
iteration. Then comparisons should be made, if possible, between the model and system
behavior data for at least two sets of experimental conditions.

After validation and verification, the simulation model can then be used for &varie
of design tasks including optimization. However, detailed models are rarely used
interactively or for optimization in the design process because of the time anctcess
needed to run the models and the complexity of using the models. Many models are slow and
time consuming to use and provide far more information than is needed for a particular
decision. Other models fail to address the question at hand. As a result, an ad hooprocess

model development and extension using reduced-order models is often used.



One way to approach this problem of ad hoc model development and use is to
consider the value and fidelity of the information needed as well as the costinfdghe
information. In the example examined in this thesis, an improved plancha stove dedejn m
has been validated using a computational fluid dynamics solver [4]. The detailsrobthes
and design problem are discussed in greater detail in Chapter 3. In this entngy Hes
stoves are biomass cookstoves used in lower-income Central American households. The
primary purpose of these stoves is to increase efficiency, reduce cooddicggts, and
reduce the health impact of household cooking. The original stove design had large
temperature variations on the cooking surface that limited the stofecsiefness for
cooking and reduced its overall efficiency. Adding baffles to the flow of thegisaunder
the cooking surface can improve the stove’s performance, but the location and sizie®f baff
for an effective design are unknown. After going through the time-consuming validation
process using high-order models in a commercial CFD software packag€[5ta in
combination with evolutionary algorithms, an ideal baffle layout can be found for euearti
size, shape, and stove application. In the optimization process, 95% of the computational
time was spent on the CFD solver for the higher-order models. Once the high-od#ér m
has been validated and an ideal answer is known, the value of using reduced-order models
can be investigated.

2.1 -Value of information

The basic key consideration when selecting a decision in any analysisse$s e
decision’s impact: how does the decision influence future decisions, and how does the
decision change under different scenarios? Engineers must consider trstemswdhen

deciding how to expend resources to create and analyze information. This irdormay



provide value by producing a better final design. Though the benefit is uncertaiheintil
resources are spent, the analysis of all possible sources of data is oftste afwesources
[5]. Value of information operates under the growth of knowledge assumption, wdiies st
that as more information is gathered, less information needs to be acquireds[6hdly to
show that the return does not grow monotonically with increasing amounts of intermat
[7]. Thus, there must be some point at which the return no longer exceeds the cost of
collecting more information. Value-of-information metrics measure aseaf collecting
information versus the return. Another way to define value of information is astqtiaati
measure of the value of knowing the outcome of the information source(s) prior to raking
decision. It can be quantified as the difference in value or maximum expattes ut
achievable with or without knowing the information sources in a decision-making problem.
2.2 -Value of information properties

There are two types of value of information that are discussed in the ligeriue
value of perfect information, and the value of imperfect information, which is oéterred
to just as the value of information. The value of perfect information almost nesty lext is
easy to calculate and can be a useful tool for the designer. The value dfipésfetation is
calculated by assuming that the key uncertainties can be resolved absmtdstymaking
the decision. If the value of the perfect information is less than the cosato tis
information, then the analysis can stop.

The probability associated with incomplete data in value of information is linked to
operational reliability of data acquisition. The reliability is often judgethle designer. The
greater the perceived reliability of the information, the faster theeva information

approaches zero [8]. The value-of-information approach emphasizes thdityebébi



information sources in a consistent sensitivity analysis to see how vahferafiation
changes by varying input parameters including reliability. Howeverygt be noted that
aggregated probabilities of incomplete and imperfect data have the potentoala@kr
value in data acquisition [9], whereby compounding the data also compounds the
uncertainties and could create a scenario that the compounded uncertairgee thié
reliability of the compounded data in the decision-making process.

In summary, the value of information decreases as more information iseghthgr
the uncertainty in information increases, as the cost of acquiring more itifornmereases,
as the reliability of previous information acquired increases, and asp#st on a decision’s
decreases [10]. The value of information increases with the increasirappitglof making
a wrong decision in absence of new information and with the increasing codtingraa
wrong decision absent of new information [11].

2.3 - Applications of value of information

Value of information has been applied and combined with many different analysis
methods in different fields. In the financial trading sector, value of infeomats been used
to show a non-trivial, non-monotonic dependence on agents’ returns on amount of
information possessed [6]. In this model, a double stock market with cumulative inGarmati
delivered to traders was presented. The results showed that in the long runpnoednf
traders performed better than averagely informed traders. That is, theatiéorimad a
negative effect on averagely informed traders. Only the most informedstnader able to
obtain above-average returns, comparable to those achieved through insider Tiaeling
results suggest an explanation for the below-average performance diyanawveaged funds.

The possible cause is that managers are neither perfectly informeer@hsir completely



uninformed. The completely uninformed cannot be exploited by the better informed trader
as their decisions are random, but traders with average forecastingcabilive exploited by
the better informed traders.

In the oil-drilling industry, value of information has been used to introduce a slew ri
and opportunity management method and justify the continuation or discontinuation of data
acquisition [9]. In this industry, value is measured monetarily. The two vahie-of-
information applications by the oil industry are value assurance and valuercryaiue
assurance can readily identify an immediate target when the value otdatsiteon is
known. Value creation accounts for sensitivity analyses to identify key risks aabgities
that may be managed to enhance value, which can open new opportunities and facilitate
business growth as applied to portfolio management. Engineers identify the ahibeect
available data on the various combinations of chance scenarios and conscious options. They
then compare the optimal set of options to see if further data acquisition g$sargcén a
common example, engineers analyze the expected benefit of a seriesnsf @o drill or not
to drill) and outcomes (dry well or very productive well) based on a set of pgeum
gathered from preliminary seismic data. They then compare the thgfribiese actions to the
expected benefit of doing a full high-cost appraisal of the possible new wedlitie de
whether to do the appraisal and whether to drill at the location in question.

In supply-chain management, value-of-information analysis has been used &iegener
revenue by reducing information-gathering costs and redirecting invetdaryA. In this
case, a framework is introduced to determine the impact of marginal atfomon the cost
performance of a supplier. The bullwhip effect is a common problem in supply chain

management. Suppliers forecast demand for their product and the size of therynvefier



needed to deal with variations of product demand. The farther upstream a supplier is, the
larger the variations they see and the larger the needed buffer. The lafgerskthe larger
the carrying cost. The value of information has been found to increase wigvé¢hef
marginal information (i.e., a base scenario where the supplier’s only infommathe
history of orders it has received compared to a scenario where the order History, t
customer’s replenishment policy — what level of remaining stock dictatasleeing— and
the average lead time to fulfill the replenishment order are availabld).tiéitcustomer’s
additional information, the supplier can reduce error in their forecast and caa teduc
buffer size and the associated carrying costs.

In the most similar engineering design application, value of informhtsrbeen
used for simple modeling problems and for refining models [12]. As a starting p@nt, i
theorized that it is valuable to explicitly represent imprecision inabvailcharacterization of
uncertainties by using imprecise improbabilities, or a bounded interval, of soineta of
the model. Uncertainty is the gap between certainty and the designer’s ptasent s
Reducible uncertainty represents the gap between the present stabenadiioin and the
state of precise information (the actual state). Irreducible uncertaiags from random
processes and accounts for the gap between certainty and the state of preciagonfdfm
the error bounds of the information are available, the designer can measmprthed
confidence in decisions as he increases the model’s refinement.

Using a simple pressure vessel, this application of value of information emghasize
that model refinement should be based both on the accuracy of the model and on the
decision’s outcome. In this scenario, a range for the strength of ahatsed to manufacture

a pressure vessel is predicted, and with additional information, the range cdndsslré\n
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improvement potential is introduced as the value-of-information metric. A funcilap ist
introduced as the outcome associated with both ends of the range. The improvement potential
compares the upper range’s maximum expected utility of the entire desogntsphe

current lower-bound range utility. When the improvement potential reaches zeoayingr

the range of strength information is no longer needed.

Further emphasis is put on accuracy and on the decision’s outcome in a shock
simulation model, where reducing cell size is addressed in addition to choosirgetbeasi
statistical volume element that represents a small section of rh#tesiagh which a shock
is propagated. Again a range is given for the upper bound and lower bound of cell length and
the size of the statistical volume element. Combinations of three valuesddietween
each range create nine different options. A utility is again introduced antpaovement
potential compares the maximum utility of the upper bound to a specific lower bouryd utilit
It is found that though a designer’s goal should be to have an improvement potential of zero,
he/she must keep in mind that refining a simulation model improves accuracy basesr
costs. A perfect model may not be needed to make a good decision. The desigeetitseobj
in this approach is to determine the level of accuracy (or refinement) niecaade an
appropriate decision.

This work can be extended to using CFD models in design. As discussed in Chapter
1, CFD models are complex and time consuming both to build and then to operate. And yet,
they can provide a wealth of detailed information that may or may not be releviaat to t
design process and decisions that need to be made. The idea that a desigméacan fi
optimal model refinement for the use of CFD in an engineering problem is migre ful

addressed in Chapter 3.
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2.4 - Creation of value-of-information utility measurement

One of the key aspects of using value of information in building an information space
is developing measurement of the utility or metric of the design or decision. $dialy
modeling community’s research environment places great importance on evaluation
involving quantifiable metrics that can be assessed and judged with clarity aracgc8ut
in engineering design, it is impractical to fully characterize a modeiaddoenstraints such as
time and computational ability. In the design phase, only partial charattarin&the
design problem is available and much of this understanding is of a subjective atitere r
than a quantitative nature [12]. Thus, the creation of the value-of-informatiy fadis on
the shoulders of the engineering designer [13]. The engineering desigrestiamiliar
with the design question at hand. And although the final decision is unknown, she/he is mos
able to create a metric that identifies the important components thateresed as gauges
for the engineering design.

For the financial trading sector case, the value-of-information meteid by the
financial analyst had components that included the information levels of futurendisidad
the expected return on the dividends paid to the investors after each period. For #ik oil-w
drilling case, the value-of-information metric used by the geological ezrgitad
components that included reliability of information, probability of the correcsdeciand
monetary return on investment. For the supply-chain management case, the value-of
information metric used by the supplier reflected the reliability ofrtf@mation resources
and their cost reduction implications. In the simulation design case, the vahferofation

metric used by the engineering designer had a cost formula portragibgdl tof materials
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cost to manufacture the pressure vessel, the reliability of the simulatael,rand the
bounds of the outcome of the engineering designer’s decision.

When considering the use of CFD modeling in design, areas that need to be
considered include grid or mesh resolution, the properties of state definimgdharid
similar to the pressure vessel and shock problem, the validity or reliabillg sfrhulation
model, the simulation wall convergence time, and the outcome of the engineergmgdes

decision.
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CHAPTER 3 Description of the CFD Model and the @asuestion

CFD models have the capacity to provide a wide range of detailed design tndarma
that may or may not be related to the design process and the decisions that need & be mad
However, as discussed earlier, it is time consuming to build, validate, andar&#ip
model. Once the model has been constructed, using it is also time-consuming.teart of t
problems that arises is that the validation of the model and the use of the model for desig
and decision making is often integrated or coupled so that validated models are thought to be
ready to use in the design process. But the relationship between the modelandpbts
critical design questions is often not clear. The CFD model may only provide duealitat
information; it may provide information that is too detailed for the stage of the desite
accuracy of the model may not be sufficient to answer the particular desigiomuesis
thesis explores one aspect of this question — following model validation, how can lower-
resolution CFD models that act as metamodels in the design process be dessgdenhia
coarser grid? The proposed selection and development criteria for these aredssed on
the value of the information provide by the models within the context of the engmeer
design process.

The design problem used in this study is the design of an improved wood cookstove
used in lower-income households in Central America. As shown in Figure 1, the improved
wood cookstove being designed is a freestanding cookstove with a small combustion
chamber that heats a large flat cooking surface (plancha). The cooking is usad aarill
for cooking tortillas (a flat unleavened bread) and for cooking beans and rice. Bakex] on t

the ideal temperature distribution is a single hot spot for quickly boiling watemnaexta
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Figure 1- Improved wood cookstove

temperature over the rest of the stove’s surface for cooking tortillas mesing foods. The
primary source of information for this design is based on CFD analysis [4]. dhes\sas
developed to increase efficiency, reduce cooking fuel costs, and reduceltihéntgact of
household cooking [16-19]. The proposed stove design had a large temperature variation on
the cooking surface that limited the stove’s effectiveness for cooking. G&ibgoaffles

added to the flow of the flue gas under the cooking surface can enhance the stove’s
performance. A CFD model was used for the design because there is rey bmyost

solver that could predict the surface temperature of the stove and a cut-gngolkogch was
excessively expensive and time consuming. Without baffles, the cooking surdiace ha
temperatures as cool as 150°C in some regions and as high as 600°C in others. The user sets
the overall surface temperature by varying the fuel feed rate. Howexeeldlive spatial

temperature variation is generally unaffected by the fuel feed rate.
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3.1 - Stove model

As shown in Figure 1, the cookstove consists of an elbow-shaped combustion
chamber approximately 10 cm x 10 cm into which small wood sticks are fed. ldstlgase
the combustion chamber, travel under the cooking surface, and exit through a chimney. The
small size of the combustion chamber relative to the size of the cooking surdacsus|
and creates the large spatial variation in the temperature of the cookirug skdathis
study, this stove was modeled using commercial CFD software, Stat-Che geometry
modeled is a simple rectangular prism representing the 54 cm x 54 cm x 2.5 cm heat
exchange chamber coupled to the furnace chamber and exhaust duct. Boundary conditions
were determined from in-field measurements. The remaining surfades obdel were
assumed to be adiabatic to simulate the pumice insulation used in the stove construction.
Experimental studies in the field with various baffle configurations found no evidénce o
unsteady flows. Additionally, transient flow computational studies found no osgliat
unsteady flows with various baffle configurations. Based on this, a stead\=§tB model
utilizing the Reynold-averaged flow equations is used in the fithess evaluabioi.uStion
within the combustion chamber was not modeled. Instead, the boundary conditions at the
inlet of the heat transfer chamber during typical cooking evolutions were redashese
were a velocity of 3.88 m/s and a temperature of 977 K. Density changes in the air from
changing the temperatures were included. Turbulence was modeled using theoki—epsil
model with an intensity of 0.1 and an entrance length of 4.8 cm. Resistance to heat transf
from the cooking surface was modeled using a heat transfer coefficient ofZ(K\d

thermal conductivity of 30 W/m K, and a surface thickness of 1.6 cm. The surface grofile i
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in excellent agreement with the experimental data collected in Ni@rAdull description
of the computational model and validation process is given in [20].
3.2 - Baffles

In this engineering design problem, baffles are inserted into the flow path o obta
the desired temperature distribution on the cooking surface. These baffleeramedar
to the surface and parallel to one of the edges of the cooking surface. By gltaediow
of hot gases underneath the cooking surface, the baffles change the cookoeyspatel
temperature distribution.

In the physical stove, thin metal plates are welded to the underside of the cooking
stove to guide the flue gases. These baffles are combined to creaectnesffesign to
maintain an even temperature cooking surface. The criteria for the hedfleshat they had
to be perpendicular to the stove surface, parallel to the heating wall chambers, asigmo de
could include more than three baffles to ensure that the stoves were easy tcmanhbia
hand. The models were built in Star-EDusing rectilinear grids. The baffles in Star-tD
were modeled as two-dimensional adiabatic baffle cells.

In the high-fidelity model, the heat-exchange chamber is representetbiyxal60
x 30 rectangular grid. Two entry regions were attached to the bottom and top id tloe g
model the chimney and the inlet of the furnace heat transfer chamber (Figineaitlet
boundary condition was applied to the chimney with an assumption that all flow exits at the
chimney and there were no air losses around the stove. The inlet boundary condition was
applied to the entrance of the heat transfer chamber. A wall condition was apphedadp

of the stove that initialized the temperature as ambient 293 K.
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Figure 2 - Computational volume for the wood cookstve analysis

Before adding baffles, the high-fidelity model temperature profile Itik&g=igure 3.

Clearly, the temperature profile is varied. Near the heat source, thertgarp is near 900

K. Circular patterns emerge as radial distance from the heat source&sed. The middle

of the stove has temperatures near 700 K, a 200 K drop, and near the edges the temperature
profile falls to the range of 400-600 K. This wide temperature variation rendstoifrthe

stove surface unusable for proper tortilla cooking.

Baffle cells were added to guide the hot flue gases in the high-fidelitylnogere 4
shows the top view of an addition of a single baffle extending across the middle tofvhe s
surface, and Figure 5 shows the resulting temperature profile of the hegihyfidodel. The
profile seen in Figure 5 differs from Figure 3 in that there are two lodakeaperature
gradients, extending on both sides of the newly inserted baffle. More baffles andter a be

arrangement could then reduce cool spots and narrow temperature variation in the model.



Figure 3 - High-fidelity model temperature profile with no baffles
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Figure 4 - Single baffle placement in high fidelitynodel

Figure 5 - Single baffle placement temperature prale of high-fidelity model
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CHAPTER 4 Design of the Experiment

The goal of this computational experiment is to determine if using a loweluten
model could accurately lead to a correct design decision based on choosing between t
different design choices based on the results of varying resolution CFD matls. A
highest model fidelity choices are straightforward, though time consumioly.High-
fidelity CFD model run for this relatively simple problem takes approxipéteee hours.
Depending on the optimization and design algorithms chosen, in a practical design and
optimization problem, 100 to maybe 1000 runs would be performed. In addition, most
practical energy systems are much more complicated and require aighyfimore time and
computational resources. Because of this, reducing the grid resolution of CFI3 chatiey
the design phase is a common solution. However, this reduction in grid resolution is done in
an ad hoc fashion without specific guidelines or goals. In this experiment, weekinegsto
start to develop an understanding that can guide the process of moving CFD models from
high-resolution models to practical design tools.
4.1 - Overall design of the experiment

Ten baffle layout designs were chosen based on a range from poor to very good and
guantitatively verified by usable area calculations. Twenty differentrémelution models
were created using five different planar (x,y) resolutions and four eliffelepth (z)
resolutions. The planar grid resolutions examined were 20 x 20, 40 x 40, 60 x 60, and 80 x
80 cells. The depth resolutions used were 3, 6, 9, 12, and 15 cells. The high-fidelity model
had been validated earlier and was used as the source of absolute information. iFhe lowe

resolution models were compared with the high-fidelity models. The metriddause
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characterize the model were the nodal temperature variation, the standatiwbefithe
usable area, the usable area error associated with each resolution, artiba séldy
function based on the nodal temperature variation and standard deviation of the usable area.
The nodal temperature variation compared how accurately the lower model’s nodal
temperature values match the higher node location’s temperature value for thdeiigh
model. The nodal temperature values were interpolated to match the location ghthe hi
fidelity model’s nodes. The usable areas were calculated by comparing therrafmodes
that fell within a range of 37°& of the average non-interpolated nodal temperature. The
standard deviation of the usable area examined the variation in usable areadefxpecthe
lower-order models. The usable area error examined the resolution effdwpianar and
depth scales and how they affected the calculated usable area of the hevenadels. The
selection utility metric was created by the designer to quantifiabtytiethe correct answer
by summing a utility associated with the nodal temperature variation and tiie asza
standard deviation.

The experiments were all run consecutively on similar processors over a period of
two weeks. The output nodal values for temperature and velocity were stored iraviestsr
and the convergence time was saved to .post files in St8f-Qbe vector arrays and .post
files were converted to text files that could be read into Excel.

The nodal values for the low-resolution model were first used to calculate the usa
area for the stove. The nodal values for temperature of the low-resolution moelel we
interpolated in Excel to match the nodal placements of the high-resolution model. The nodes
where chimney and flue gas entrance would be were then removed to matcin-theefiiy

model. The temperature errof talculations were then made from these nodal values.
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Normally, the designer would not know where the results of his design would fall in
the design space, but the ability to define a good answer and a poor answer ahosvalbot
of the spectrum to be used to check how the final decision is affected by using the lower
order models of differing accuracies versus their high-resolution coungerpart

The temperature errok lvalues of all ten designs per resolution were compared
graphically against their computational wall time for convergence. TrendWeresfit across
fixed planar and depth resolution alues to examine if a correlation existed. To quantify
the usable area standard deviation values, each resolution model compared theazsable a
the ten different designs to their high-fidelity model usable area couritggba standard
deviation value for all twenty models. The twenty standard deviation valuessw@pared
graphically to their average computational time and a trend line waseftaimine if a
correlation existed. The usable area error values were compared grg@gealist their
computational time across fixed planar or depth dimensions. Trend lines were addsd to ea
design to examine the effects of fixing a dimension of resolution in the lowerroatkels.

The selection utility values were compared graphically to their aveagputational time.
Trend lines were fit across fixed planar and fixed depth dimensions to examiniethefh
fixed dimensional resolution on the selection utility model.

4.2 - Baffle designs chosen for study

Ten different baffle layouts were selected. The ten designs werdyratiasen
based on the quantitative usable area range as judged by the designes tooranpor to
very good. Normally a designer may create more than ten designs, but thges dese
chosen because they addressed most of the range of the design landscape.ddsable ar

calculations as specified in Section 4.5 were performed on the ten designs in theefiigh
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model to quantitatively verify that the ten designs fell within the range optimal baffle
layout was based on the best design in an earlier design study [4], and qudwgtitativibe
highest usable area. An obviously poor design was created by the designer totépeese
poor end of the spectrum, and its quantitative usable area was the lowest. The gemainin
designs were created to have quantitative usable areas that fell bétevpenrtdesign’s
usable area and the optimal design’s usable area. The baffle depth of each matelsea
to be two-thirds of an inch because it fell in the predicted range of optimum diebille [4].
4.3 - The high-resolution model

Based on earlier studies [4], a high-resolution model using a 160 x 160 x 30 cell grid
for the stove was used as the high-resolution model. The model chosen was validated and
verified using standard CFD metrics and experimental data. As suggeftgdaorensure
valid models, another high-resolution model was run. In addition, all the designs wete run a
160 x 160 x 60 cells. Both models were validated using experimental results asadisous
[4]. Flow features and temperatures remained the same and the model wasallyrstable
in both cases. A 1-2% difference in the usable area (defined in Section 4.5) wasdbserv
Thus, it was determined that it would be acceptable to use the 160 x 160 x 30 cell models
results as the “true” baseline.

This high-resolution model was run for each baffle design chosen for this study. The
resulting temperature values at each grid point were used as the “traajfstath baffle
design. To compare nodal temperatures for the lower-resolution grids, thewahees
interpolated across the stovetop surface to match the 160 x 160 cell plane resolutten surfa
Each high-resolution model took 2.5 to 3 hours to converge, which ranged from 15 to 1800

times longer than the lower-resolution models.
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4.4 - Metamodels examined

As discussed earlier, the metamodels used in this study were created lonygrétic
grid resolution of the high-resolution CFD model. Grid resolution was independendy vari
in the planar (x, y) direction and the depth direction. Because the physical stovpieuas s
in the planar direction, the grid resolution was maintained as a square in the x-and y-
directions (parallel to the cooking surface).

The planar (x, y) grid resolutions examined were 20 x 20, 40 x 40, 60 x 60 and 80 x
80 cells. This is approximately one, four, nine, and sixteen cells per square spelctirely,
in the plane resolution of each model. The depth (z) resolutions used were three, six, nine
twelve, and fifteen cells per inch. As is common in CFD models, there are merpezel
inch in the z- direction than the x- and y-directions because of the importance of flog
dimension. It should be noted that only three cells would not be used in the depth resolution
of a CFD model because three cells is not sufficient to resolve even thel getests of the
flow (and certainly not the most important details). However, models using tlisem cbe
depth direction were included in this study to show how increasing the deptiticestd six
cells greatly improved the accuracy of the information, reduced the eepanat allowed a
better understanding of the value of the information.
4.5 - The utility metric

The performance of each of the lower resolution models on each of the proposed
designs was determined using a set of computational experiments. Thremaec®areas
were examined in each case. These were the accuracy of the tempecdiia;ehe
accuracy of the usable cooking area, and the accuracy of selecting theSogst

Temperature profile and usable cooking area were chosen because theyawedidita that
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would be used by the design engineer to choose a particular baffle design. draeyaot
selection was examined because the designer would generally makehbees on a
relative basis, comparing the relative performance of various designs. As aieq e
goal of the design is to maximize the surface area of the stove availabt®kmng by
creating a uniform temperature on the surface of the stove.
Temperature profile

The first question about the low-order models is how the temperature values at each
location of the stove surface compare with those of the high-resolution model. To eompar
these values, the temperature values computed by the metamodels wereatetktpahatch
the high-resolution model measurement locations. Then these temperaturesmasiead to

their high-resolution counterpart as follows

LP = z \/(Tijnxn _Tijl60x160)2

nodes gy, ;60 (1)

The temperature errorlvalue is in units of Kelvin. A lower temperature errgivalue
would indicate a model that has temperatures that are closer to the high-odéér m
temperatures and a more accurate model. A higher temperatureseratmé_would indicate
that a model has temperatures that are farther from the high-order srogefratures and is

a less accurate model.
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Usable area

The quality of the design was determined by the percentage of usable space on the
stove. The area of a stove was considered usable if the temperature caloutated i
within 37.5°C of the average temperature of the surface. The acceptable temperature
variation was chosen based on earlier studies in which stove users identifiecpretfare
characteristics. The area directly above the combustion chamber wasladed in the
calculation of the usable area, as it would be used for boiling water and not for cddieng
area occupied by the chimney was also not included in the usable area (Figoreatyiven
design, the usable area was divided by the available surface area to obtainahtage raf

usable surface area.

Figure 6 -Usable area of stove
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Two metrics, usable area standard deviation and usable area error, were used to
compute the difference in usable area calculated for the lower-resolution madehpared
to the usable area estimated for the high-resolution model. The standard deviassritee
ten designs in the design space was calculated to quantify the varianeesalble area

calculation.

1 X
o= 7\'.1' Z(‘I? - ”)E.‘

il @

wherep = high-resolution model usable area value grdow-resolution metamodel usable
area value. Using this metric, a large standard deviation for a given resahdicates a less
accurate model. A lower standard deviation area error value would indicadentioalel was
closer to a high-resolution model and a more accurate model.

To compare error associated with increasing resolution in the depth versasimgr

resolution in the plane, the following equation was used:

A&ror,nxn = A.Jsable,lG(k 160 Ajsable nxn (3)

The difference between the high-resolution model usable area and the low-resolution
model usable area was calculated and compared as one resolution (depth/planie) was he
constant while the other resolution (plane/depth) was increased. If the modefeuvet to
favor one resolution over the other, further investigation was performed to see how that

resolution affected the robustness of a model.
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Selection utility
The last and most important question of the low-order models is whether the model

leads the designer to the correct answer. To quantifiably answer this, veealulate the
utility of each resolution by using the temperature ergordlue and the usable area standard
deviation values and comparing their combined predictive ability to lead the designer to a
good design. As stated in Section 2.4, the creation of the value-of-information megtic m
come from the designer [13], who should have the most familiarity with the problemrand ca
make a usable utility equation. The following equation was created:
o +‘( 50%—0‘) o

g 50% 4)

Uﬂmy:‘(mj

200K

wherew > = 0.5 ando, = 0.5. Equation 4 combines temperature ergordlues and the

usable area varianeevalues by making each component non-dimensional. The selection of

200 K for temperature error and 50% for variance of usable area as comparatisevealue

made based on the worst-expected-case scenario, where the dedigmair tled worst

performing models would not have values exceeding 200 K fand 50% for,

respectively. We assume that a “good” low-order model is representedydnutie L,

value and the usable area standard deviation value. The weight given to each value is 0.5.
The ideal low-order model utility would have a value of unity, 1, because its

temperature component,,land usable area componentwould both be 0. The lowest low-

order model utility value is 0. Using the absolute value of both components in the utility

function addresses the issue of either component exceeding their respedivexpected-

case values. For models with values slightly above 200 Kifor B0% usable area for

(i.e. 205 K or 52%) the utility value low will still be low. If the model has vergda
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temperature fluctuations above 200 K or usable area standard deviation values above 50%,
(i.e. 300 K or 75%), the designer should remove the model from the design space.
To find a utility value, the designer needs to compare the magnitude of the utili
value that leads the designer to the correct decision. This can be done byigtrelats
found from the utility plots or by verification of some goal/selection as perrdeed by the

designer.
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CHAPTER 5 Results

Using the protocols discussed in Chapter 4, computational runs were completed (ten
designs x twenty lower-resolution models/design). The results of these etmamalyzed
using the metrics described in Section 4.5 and the results plotted. These pio¢s@néed in
this chapter and a number of conclusions are drawn.
5.1 - Temperature

As would be expected, the accuracy of the metamodels in predicting the tengperatur
is strongly dependent on which planar resolution or depth resolution is being considered.
Figure 7 shows the temperature error as a function of computational timeidorsvgnid-
resolutions in the depth axis. As shown, the errors are strongly a function of the grid
resolution in the direction of the depth and to a lesser degree the resolution of the grid in the
xy plane. In fact, there is very little crossover between the various dégtiegplutions. In
addition, as the computational time increases at any fixed-depth grid i@sallaé¢ error is
about the same. This implies that at a fixed-depth grid resolution, the model gappaars
to be significantly less dependent on the xy plane grid resolution than on the gridoasoluti
of the depth. Also, the range of the error band decreases as the depth resolutisesincrea
This means that as the fixed-depth grid resolution increases, the range ofggbsatare
variation of the design space narrows. Thus, at low fixed-depth resolution, thgeavera
temperature values are farther off from the true value and the range ofubecgdzand in
the design space is wider. Conversely, at high fixed-depth resolution, the accuracy
temperature values are much closer to the true value and the range of theydzamulan

the design space is narrower.
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Figure 7 - Temperature error as a function of comptational time for fixed-depth resolutions

Figure 8 shows the temperature error as a function of computational timeiéusvar
grid resolutions in the xy-plane. As shown, the error decreases with imcyelagith
resolution. This is consistent with observations made in the fixed-depth grid resolagbn gr
Second, as the fixed-plane resolution is increased, the cost band for the design spac
increases without significant increases in accuracy. At the lowedtibame resolution, the
range of the cost band is about 20 seconds. At the highest xy-plane resolution,elef rang
the cost band is about 650 seconds. This means that nearly the same error values occur
regardless of the fixed-plane resolution. This implies that the accur#iog ofodel for

predicting temperature profiles is independent of the grid resolution in the xy plane
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Figure 8 - Temperature error as a function of comptational time for fixed-plane grid resolutions

5.2 - Usable cooking area
As discussed in Section 4.5, the usable cooking area of the stove was determined by
calculating the percentage of the available cooking surface withihnG3df3he average
surface temperature. The acceptable temperature variation was chaskorbearlier
studies in which stove users identified preferred stove characteristics.alile aea was
used in the high-fidelity models to quantitatively rank designs from poor tagoed.
Therefore, it is important to identify how the calculated usable areadatiffetween the
high-fidelity models and the lower-resolution models. If the lower-resmiutiodels have
some inaccuracy of usable areas in comparison to the high-fidelity modemgdgant to

guantify that error and understand how it affects the designer’'s deciki@stdndard
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deviation for ten designs shows the variance in usable area calculated ferdselation
models. It is an easily replicable approach that also renders a quantitatric that can be
used in the selection utility metric. The area error metric quantifeedifference between
the high-fidelity model's usable area value to the lower-resolution magsisle area value.
It is used to identify the role that fixed resolutions played on usable areadgkistgd and
how it affects which resolutions a designer uses.
5.2.1 — Usable area variance

For each low-resolution model, a usable area is calculated for ten designs.[dlbe usa
area for each design in the lower-resolution model is compared to the usabieraach
design in the high-fidelity model. The ten differences in usable areaet@sispecified in
Section 4.5 to calculate a standard deviation value for that particular lowerticesol he
ten designs’ computational times are averaged to a single time quanaacfolower-
resolution model. This created twenty standard deviation values from twentegmlifi@ver-
resolution models. Figure 9 shows standard deviation values as a function oéaverag
computational time. As shown, the standard deviation of usable area decreases iedgonent
with increasing average computational time. At low grid resolution, the sthddeaiation is
high. As grid is increased, the rate of decrease in standard deviation dimimtsisesend
would suggest that the designer use a model with a grid that results in a moderate
computational time (100-200 seconds) because further time invested does noasityific
decrease the standard deviation value. The selection utility metric ustarttiard deviation

metric to assess its impact on the designer’s decision.
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Figure 9 - Usable area standard deviation values et

5.2.2 — Usable area error

The area computed by the metamodels is used by the designer to choose between
competing designs. In the same manner as the error associated withpbeateras was
examined, variations in grid resolution in the depth and planar directions are ekamine
Figure 10 shows the error in the usable stove surface area as a functiopofatiomal time
and baffle design for changing grid resolution in the xy plane with a fixed gatuten of
15 cells in the depth dimension. As shown, the error associated with each desigesedecre
exponentially as the plane resolution increases. At low-plane resolution, dher@meis

high. As the plane resolution is increased, the rate of decrease in erruski@ni
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Figure 11 examines the error associated with the computed usable afeac®a

of computational time and baffle design for changing grid resolution in the deypih pith

a fixed-grid resolution of 60 x 60 cells in the xy plane. Once again, as the computatienal t

increases, the error associated with each result decreases expggnémni@al time cost (a

result of low resolution), the computed usable area has an error of 5% to 45% depending on

the design. As time invested in the computation increases, the upper end of tharetror b

drops substantially. This would validate part of a value-of-information modelhwhits for

diminishing returns as more accurate information is gathered.
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In both Figures 10 and 11, there is a wide band of area error. At the higher end of the
error band are Designs 3, 4, and 8 in both the fixed grid planar resolution and fixed grid
depth resolutions. These designs are ranked as the top performing designs bytitativeia
measure of usable area in the high-fidelity model and are included the optangal de
(Design 8) as found in [4]. When examining the raw data, the low-resolution models
overestimated the usable area, further separating the top performingsdesig the other
designs. For example, the high-fidelity model's usable area for Desigis 8@96. For the 40
x 40 x 06 grid model, the usable area for Design 8 was 55%. Conversely, at the bottom end
of the error band of both fixed resolutions were Designs 1, 5, and 10. These designs are

ranked as the lowest-performing designs by the quantitative measure ofarsalbg the
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high-fidelity model. This maintains a more accurate usable area of poonglesihe lower
resolution model, so the poor designs still return a low usable area value in thedawioe
model. For example, the high-fidelity model's usable area for Design 1 was 1@Yeas
the 40 x 40 x 06 grid model’s usable area for Design 1 was 23%. The lower model's usable
area would affect the designer’s decision by pushing the good designs flanthether
designs and maintaining the poor design at the lower end of the usable area sgéusrum
may lead the designer to using the lowest order models. However, the averageipgrfor
designs have error values that cross over (Design 2 crosses Design 4enlBjgur have
even higher usable error values than those of the higher performing desigigs @bkas the
highest usable area error in Figure 11) at the lower convergence tti@esgult of low
resolution), which could lead to average designs getting higher usabl¢ramea®od
designs in the metamodel. This pushes the designer to use a higher resolution ineodel. T
usable area error metric gives the designer insight on how the lower-i@sohadel works
for very good or poor designs, but it alone cannot lead the designer to the optimal grid choice
because it does not effectively deal with the entire design space and couleldadigner
to a sub-optimal design selection.

An explanation for high error in usable area for good designs and low error in usable
area for poor designs may lie in the general rule of thumb in CFD modedihg minimum
of 10 cells must be used in the flow for it to make sense. In fact, it is sogpttisit any
applicability is observed in grids with depth resolutions of 3 or 6 cells. The usehble a
metric is based on the results from a two-dimensional surface, but the CFD tselfied a
three-dimensional object. This means the surface cells are affectedtbsnerature and

velocity effects of their neighbors besia® below them. As the temperature error graphs
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show, changing the depth resolution affects the overall accuracy more thgmghae
plane resolution.

As stated previously, all the baffles were made to be two-thirds of the stove depth.
Thus, the bottom third of the stove cells directly below the baffles are “freatthere are
no baffles guiding fluid flow. For poor depth resolution, this may lead to the “frels” cel
having unrealistic thermal and velocity values because there are so fewpaictsrately
model the flow. This can be easily seen in the magnitudes of both the temperature and
velocity values (Figures 12 and 13). In designs that have baffle locationhadeat
source, the “free” cells are observed to have higher and unrealistic teinparrad velocity
values as the depth resolution is decreased. Generally, poor quality designs hese baff
located farther away from the heat source. We postulate that the tamparad velocity
values near these “free” cells are lower because the heat source hasl fatitaer before it
reaches the baffled areas. The magnification effect is still the & given resolution, but
the temperature and velocity values being magnified are lower becausadtasther from
the heat source. Thus, designs of poor quality would have lower error values because the
lower magnified temperature and velocity values would lead to smallef te#l vector
values. As the depth resolution increases, the magnification effects on the eresrofahe
“free” cells decrease. Figures 12 and 13 show the velocity profile of a pkffled directly
next to the heat source. In Figure 12, the depth resolution is 3 cells. In the bottbof the
model, the “free” cells only get the single velocity value of about 4ImfSigure 13, the
depth resolution is 15 cells. In the bottom third of the model, the “free” cells haverir®
the amount of heat transfer calculations and the velocity values of the fluid hange af2

m/s to 4 m/s for the same design. To further validate the hypothesis about¢hefditdfle
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placement near the heat source, when checking the layout of the one poor quahtyvdbsig
high overestimation of surface area, the layout does indeed have two baffldg diecthe
heat source, but is an overall poor design. This verifies the rule of thumb that at leglist 10 ¢
should be used in the direction of the flow in a CFD model. Thus, a designer would want to
use a higher grid in the depth resolution.
5.3 - Lower-resolution model performance accuracy

Having examined the accuracy of various lower-resolution models as a function of
variable, time, and design, the question still remains how much accuracy is neassest
design performance to pick the best design and at what cost. Selectiomnutiilis/study
analyzed whether the lower-order models would render the top performingsasicated
by Equation 4. Figure 14 shows selection utility as a function of computatiomaidrm
various xy plane grid resolutions. As shown, the selection utility shows iedrgams as
computational time is increased. This is expected since selectionigtdigyived from the
temperature errorjdvalue and usable area standard deviatidyoth of which decrease as
computational time increases (as noted in Section 4.5, as these two components tended to
zero, the selection utility approached the ideal value of unity, 1). This indibatebe
varied resolution, the depth resolution, has a direct relationship with the utility, and thus, a

direct relationship with the value of the lower-grid resolution.
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Figure 15 shows selection utility as a function of computational time fayusari
depth grid resolutions. As shown, there is small gain in selection utility asthgutational
time is increased. This is also expected since the utility value isliyadgaved from the
temperature errorjvalue, which exhibits the very low gains as computational time is
increased in its fixed-depth resolution graphs. The usable area standarndlewigcreases
exponentially with increasing average computational time, which would explasmilé
gains at low computational times and almost none at high computational times.

Using the trends of selection utility as guidelines for the optimal gralutsn, a

high depth resolution should be selected because it has a direct relationship ityitlandila
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low plane resolution should be selected to reduce cost since it exhibits much lowes iret

utility. From the view of improvement potential from [12], the value of using a 20> 1X)
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Figure 10 — Utility values for models at fixed dept resolutions
grid as compared to no information returns a utility value of 0.7 for a cost of 20 sd€onds.
we chose to invest further in a 40 x 40 x 15 grid, the value increases by 0.1 of an additional
investment of 80 seconds. Both grids offer a high selection utility value at lowsodbke
next comparison is to find how the selection utility value corresponds to the desuéd of
the problem. To verify the selection utility value to the low-order model satesctine
results comparing the quality of the designs showed that the low order moddllyerita

filtered the top three designs from the rest for both the 20 x 20 x 15 grid and the 40 x 40 x 15
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grid. Therefore, with preference being to minimize cost (in this case, catigmal time),
the 20 x 20 x 15 grid would be used.
In summary, the 20 x 20 x 15 grid would be selected to help distinguish the good
quality designs (in this case, the upper 30%) from the rest of the tested éseolertion
models. The computational wall time for these models was in the range of 20-25 seconds per
run. At 500 times less than the average convergence time of the high-resolution mogel, usi
the low-order model here saves the designer time or enables him/her to tdstrastiope of
designs while checking if the layout itself is even worth pursuing. Forgramdesigner
could employ the lower-resolution model in a teaching assistant programothidt tvelp
identify whether the proposed design would be worth pursuing with furtherclesétarould
also be used in conjunction with visual recognition software to teach the computet/stude
what to look for in the optimal baffle layout.
5.4 - Analysis
After the initial runs found the low-order model dependent on depth resolution and
more independent of plane resolution, stove models of 20 x 20 x 30 and 20 x 20 x 60 cell
resolution were created and the ten baffle designs were run on each resolution. Bygdoubl
the depth resolution from 15 cells to 30 cells, nine of the ten cases saw signikeaatrar
reduction, and the tenth had a minor increase. This came at a cost of approximately 60
seconds of computational time. However, by stepping up the depth resolution to 60 cells, the
error values for four out of the ten designs hedeases in area error and the other six had
either no or minor area reduction. This occurs because of poor aspect ratio ofltkese ce
Before, having too few cells in the depth resolution magnified the inaccunmacies

both the thermal and velocity values (as discussed in Section 5.2.2). However, the aspe
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ratio of the cell must be considered. Each cell in this stove model looks like a veplatie

The X-Y geometry of the cell is about one centimeter in each direction, whieeedapth of

the cell is equivalent to less than 1726f a centimeter. As a result the error values increased.
The way to counteract the effects of the thin plate cells would be to increasartée pl

resolution of the model, but again, that would greatly increase the convergence time. Furthe
investigation could show that some ideal depth resolution for a 20 x 20 fixed plane resolution

of this model exists, and that it could lie between 15 and 60 cells.
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CHAPTER 6 Conclusions and Future Work

In summary, it was found that lower-resolution models could be validated to
accurately model high-fidelity CFD models. The process starts witkignae who is
familiar with the model and the problem creating some comparable quantifiatbiesrtieat
describe the models. The designer uses the metrics to create a selditjionaitic, which
is used to aid the designer in finding a low-resolution grid that is low cost but returns
accurate answers.

In the case of the plancha cookstove, even at moderate temperature anesea
low-order models could lead the designer to separate good designs from poor designs a
considerably lower computational wall clock time. Depth resolution was observedy/tarpl
important role in design selection of the cookstove model, as well as temperatareand
accuracy. Depth resolution can be increased at a fixed-plane resolutiontigitdiditional
expense of computational wall time. Even when combining high depth resolution with low
plane resolution, the low-order model still helped lead the designer to the upper 30% of the
design space. However, adding too much depth resolution at low plane resolution can lead to
errors due to poor aspect ratios, which cuts into the correct design filtration sbmesideal
resolution for this model must exist. The proposed resolution for this cookstove model would
be 20 x 20 x 30.

Possible future work includes determining the ideal depth resolution for low-plane
resolutions, such as 20 x 20, to minimize temperature and area error. Future workscould a
explore making a confidence interval in how well a low-order model will estithatusable
area of the stove using the standard deviation values associated witbsedction. In

addition, an error magnification characteristic could be investigated foatlimg depth
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resolutions, especially low-depth resolutions. Also, the concept of designadiitcatuld be
combined with an image/pattern recognizer as a trainer to help find a viseah faitt

sorting the quality of the designs.
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